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1 VC Classes of Sets

VC stands for Vapnik and C̆ervonenkis, who were the first to study these sets.

Let C be a collection of subsets of a set X . An arbitrary set of n points {x1, . . . , xn} possesses
2n subsets. Say that C, picks out a certain subset from {x1, . . . , xn} if this subset takes the form
C ∩ {x1, . . . , xn} for some C ∈ C. C is said to shatter {x1, . . . , xn} if all possible 2n subsets can be
picked out by C.

The VC-index V (C) of the collection C is the smallest n for which there is no set of size n, which is
shattered by C. More formally we can defined the VC-index by:

∆n(C, x1, . . . , xn) = # {C ∩ {x1, . . . , xn} : C ∈ C}
V (C) = inf{n : max

x1,...,xn
∆n(C, x1, . . . , xn) < 2n}

Note here that it is possible to have a set with V (C) = ∞. Here we will be focusing only on sets
with finite V (C) index. These collections of sets are called VC-classes.

Example (Cells in Rd). The collections of all cells of the form (−∞, c] in R shatters no two-point
set {x1, x2}. This is because we can’t pick out the larger of the two points only. Thus the V (C)
index of this collection is 2. The collection of sets (a, b] for a, b ∈ R shatters every two point set,
but it cannot shatter any set consisting of three points {x1, x2, x3}, because it can’t pick out the set
{x1, x3} (assuming x1 < x2 < x3). Thus the VC-index of this collection is 3. Similarly it can be
shown that the VC indexes of cells in Rd of the first type is d+ 1 and of the second type is 2d+ 1.
In the appendix we sketch a quick proof of the first of these facts, the other is left as an exercise.

VC classes are important because of the following important combinatorial result: the number of
subsets shattered by a class C is at least the number of subsets picked out by C. Formally we express
this statement as:

Lemma. Let {x1, . . . , xn} be arbitrary points. Then the total number of subsets ∆n(C, x1, . . . , xn)
picked out by C is bounded above by the number of subsets of {x1, . . . , xn} shattered by C.

This result is known as Sauer-Shelah lemma, even though it was first proved by Vapnik and
C̆ervonenkis.

Proof. Assume WLOG that every C is a subset of the given set of points, such that ∆n(C, x1, . . . , xn)
is the cardinality of C.

Call a collection of sets in C hereditary if it has the property that B ∈ C whenever there exists C
such that B ⊂ C ∈ C. Each set in a hereditary collection is shattered (each of its subsets subsets
are part of C). This means that in a hereditary collection of sets the total number of shattered sets
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is at least |C| which of course bounds the number of sets that C can pick out. The proof proceeds
to show that any collection of sets C can be transformed in to hereditary collection of sets, without
changing its cardinality and without increasing the number of shattered sets.

For a fixed 1 ≤ i ≤ n, consider the following operation on the collection. Define:

Ti(C) =

{
C − {xi}, if C − {xi} 6∈ C
C, if C − {xi} ∈ C

Or in words, Ti deletes the ith element of the set C if this creates a new set in C. Therefore if a set
doesn’t contain xi it will be left untouched by this operation, and if a set did contain xi it will be
deleted only if this creates a new set.

Note several facts about this operation on the whole collection of sets C. First, Ti(C) is of the same
cardinality as C (|Ti(C)| = |C|) because the map Ti is a bijection.

Second, note that if a subset of {x1, . . . , xn} is shattered by Ti(C) it is shattered by C. To see this
take a subset A ⊂ {x1, . . . , xn}, which is shattered by Ti(C). If xi 6∈ A we have that C∩A = Ti(C)∩A
for C ∈ C, and therefore Ti(C) shatteres A if and only if C shatters A. Now consider the case when
xi ∈ A. If Ti(C) shatters A it follows for that each subset B ⊂ A then since B ∪ {xi} ⊂ A we
have B ∪ {xi} = A ∩ Ti(C) for some C ∈ C. IIt follows that xi ∈ Ti(C) and therefore Ti(C) = C.
This means that both C,C − {xi} ∈ C.Therefore we have the following representations of the sets
B∪{xi} = A∩C and B−{xi} = A∩(C−{xi}). Finally note that exactly one of these two sets is B.

The last two facts showed that applying Ti to the collection C preserves the cardinality and doesn’t
increase the number of shattering sets. Therefore the same is valid for the transformation T1 ◦ T2 ◦
· · · ◦ Tn. We can apply this operator until the collection of sets stops to change. This will happen
until at most

∑
C∈C |C| number of steps, because

∑
C |Ti(C)| <

∑
C |C| when the two collections

are different (when they are different at least one set has lost an element). Finally note that the
stable collection D we end up with is hereditary. This is the case since for any element D ∈ D, the
sets D − {xi} ∈ D for all i. Finally this finishes the proof.

Corollary. For a VC-class of sets of index V (C), one has:

max
x1,...,xn

∆n(C, x1, . . . , xn) ≤
V (C)−1∑
j=0

(
n

j

)
And further, for n ≥ V (C)− 1 we have:

V (C)−1∑
j=0

(
n

j

)
≤
(

ne

V (C)− 1

)V (C)−1

Proof. Indeed for a VC-class of index V (C) it doesn’t shatter any set of size at least V (C). Therefore
from the previous lemma we directly obtain the bound of the first inequality. The second inequality
is easily verified through a Taylor expansion of eV (C)−1.

Theorem. There exists a universal constant K such that for any VC-class C of sets, any probability
measure Q, any r ≥ 1, and 0 < ε < 1, we have:

N(ε, C, Lr(Q)) ≤ KV (C)(4e)V (C)
(

1

ε

)r(V (C)−1)
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The proof of this theorem is quite involved. However, there exists a simple proof for the following
slight weakening which we will consider. Same statement as before but for any δ > 0, we can show
that there exists K depending on V (C) and δ only such that:

N(ε, C, Lr(Q)) ≤ K
(

1

ε

)r(V (C)−1+δ)

Proof: Note that ||1C − 1C ||Q = Q1/r(C∆D). Thus it suffices to show the problem for r = 1,
and the rest is just a consequence. Take any subcollection C1, . . . , Cm ∈ C, with Q(Ci∆Cj) > ε for
any i 6= j. Generate a sample X1, X2, . . . , Xn from Q. Two sets Ci and Cj pick out the the same
subset from a realization of the sample, if and only if no Xk falls in the symmetric difference Ci∆Cj .
Thus if every symmetric difference contains at least one point from the sample, then all Ci will pick
out a different subset from the sample. In that case C picks out at least m subsets of the sample
X1, . . . , Xn. The probability that this event does not occur is bounded by:

∑
i<j

Q(Xk 6∈ Ci∆Cj for every k) ≤
(
m

2

)
(1−max

i,j
Q(Ci∆Cj))

n

≤
(
m

2

)
(1− ε)n

The last expression is less than 1 for n large enough. For such n there exists a set of n points from
which C picks out at least m subsets. In particular for n > − log

(
m
2

)
/ log(1 − ε), we have by the

Corollary that:

m ≤ max
x1,...,xn

∆n(C, x1, . . . , xn) ≤ KnV (C)−1

With the constant K depending on V (C) only. Note that we have the inequality − log(1 − ε) > ε,
and since log

(
m
2

)
≤ 3 logm we can take n = 3(logm)/ε, and thus conlcude that:

m ≤ K
(

3 logm

ε

)V (C)−1

Of course for any δ > 0 we know that logm < Smκ for some S depending on κ and therefore, if we

select κ = δ̃ = δ
(V (C)−1+δ)(V (C)−1) we get, that (logm)V (C)−1 ≤ Sm

δ
(V (C)−1+δ) . Finally, after putting

everything together, we get the desired result.
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A Some Details

Why is the VC-index of (−∞, x], x ∈ Rd – d+1? First note that the set of d points {[0, . . . , 1︸︷︷︸
i

, . . . , 0]}di=1

can be shattered. For the other part we show that no set of size d+ 1 in Rd can be shattered. Take
the union of points such that for each index they have the largest number. These points are at
most d. There is no way we can shatter this set without including all points, which would be a
contradiction. This finishes the proof.
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