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1 Spaces of Bounded Functions

Theorem. Let Xn : Ωn 7→ `∞(T ) be arbitrary. Then Xn converges weakly to a tight limit iff Xn

is asymptotically tight, and the marginals (Xn(t1), . . . , Xn(tk)) converge weakly to a limit for every
finite subset t1, . . . , tk of T . If Xn is asymptotically tight and it’s marginals converge weakly to the
marginals (X(t1), . . . , X(tk)) of a stochastic process X then there is a version of X with uniformly
bounded sample paths and Xn  X.

Theorem Proof. If Xn is asymptotically tight and the marginals converge weakly, then by Lemma
1 Xn is asymptotically measurable. Now we can apply Prohorov’s theorem to get that we can divide
Xn into subsequences each of which is converging weakly to a tight limit. If we show that each
limit is the same we are done. Because we have the marginal convergence (on all subsequences),
and Lemma 2 this finishes the proof in this direction. Now if Xn converges weakly to a tight
limit we know that this is equivalent to Xn being asymptotically tight. Furthermore the marginals
weak convergence comes as an implication of the continuous mapping theorem (note that the map
f(z) = (z(t1), . . . , z(tk)) is continuous for z ∈ `∞(T )).

Finally note that if Xn is asymptotically tight and the marginals converge, by the first part we have
that Xn  X, where X is tight limit. Furthermore, since X is tight, then it concentrates on a σ-
compact set K ⊂ `∞(T ) with P (X ∈ K) = 1. The last implication shows the uniform boundedness
of the sample paths.

2 Characterizing Asymptotic Tightness in `∞(T )

While we know how to deal with the marginal weak convergence, characterizations of the asymptotic
tightness are needed, in order to be able to prove weak convergence of the empirical process.
We formulate a theorem which is essentially relating the (asymptotic uniform, equi-) continuity of
the sample paths t 7→ Xn(t) to asymptotic tightness.

We have the following theorem:

Theorem. A sequence Xn : Ωn 7→ `∞(T ) is asymptotically tight, if and only if Xn(t) is asymptoti-
cally tight in R for every t, and there exists a semimetric ρ on T such that (T, ρ) is totally bounded
and Xn is asymptotically uniformly ρ-equicontinuous in probability, i.e. for every ε, η > 0, there exist
a δ > 0 such that:

lim sup
n

P ∗

(
sup

ρ(s,t)<δ

|Xn(s)−Xn(t)| > ε

)
< η

Futhermore we have:
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Addendum. If, moreover, Xn  X, then almost all paths t 7→ X(t, ω) are uniformly ρ-continuous;
and the semimetric ρ can WLOG be taken equal to any semimetric ρ for which this is true and
(T, ρ) is totally bounded.

Let’s spend some time on understanding the theorem and the addendum.

It is not surprising that we require asymptotic tightness for each of the coordinate projections Xn(t),
since any continuous function g(Xn) should be asymptotically tight if Xn is asymptotically tight,
and the projection is a particular example of that. This is true because a continuous image of a
compact set is compact.

What does a totally bounded set mean? Totally bounded set, is a set such that for each ε > 0 we
can find a finite cover of the set consisting of open balls of radius ε of the set. So the theorem is
really saying that we can “chop up” the space T into finite number of balls of radius δ, and on each
of these balls, for all n it is very likely that our Xn’s restricted to a ball should be very close to each
other with high probability.

In other words if we denote the balls with Bi, i = 1, . . . , k, we have that the behavior of the processes
Xn(t) could be explained by the marginal distributions (Xn(t1), . . . , Xn(tk)), where ti ∈ Bi up to
errors of ε, η.

The addendum, seems also to make intuitive sense. If the sample paths of the sequence of processes
become to act similarly on the balls Bi then so must be true for the sample paths of X, hence con-
tinuity should be expected. Furthermore, if many metrics ρ are making (T, ρ) totally bounded and
the sample paths of X uniformly ρ-continuous it would be “unnatural” if we could only use some of
these, to show the asymptotic uniform equicontinuity. Fortunately the addendum guarantees that
that’s not the case.

There is a question of what semimetrics one should try in practice. Examples could be ρ0(s, t) =
E arctan |X(s) − X(t)|, ρp(s, t) = (E |X(s) − X(t)|p)1/(p∨1), 0 < p < ∞. Checking that these are
semimetrics is left as an exercise (Hints: consider the function arctan(x)+arctan(c−x), for 0 ≤ x ≤ c,
|a+ b|p ≤ |a|p + |b|p for p < 1, and Minkowski’s inequality).

It can be shown that ρ0, would do the job, however it might not be convenient to use. For the ρp
metrics it is not clear wether they would work, as the expectations need not even be finite.

Turns out however, that for the Gaussian process, we shouldn’t be worried about using ρp.

2.1 Gaussian Processes

Def. A stochastic processX is called, Gaussian if each of its finite dimensional marginals (X(t1), . . . , X(tk))
has a multivariate normal distribution on Euclidean space.

Theorem. Let X be a Gaussian process with “intrinsic” semimetrics ρp, and let Xn be a sequence
of random elements with values in `∞(T ). Then there exists a version of X which is a tight Borel
measurable map into `∞(T ) and Xn converges weakly to X if and only if for some p (and then for
all p):

(i) The marginals of Xn converge weakly to the corresponding marginals of X

(ii) Xn is asymptotically equicontinuous in probability with respect to ρp

(iii) T is totally bounded for ρp

Typically one uses ρ2 as a semimetric as it is the easiest to work with.
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The sufficiency of these conditions should be evident from the theorem above. However in the Gaus-
sian process case, we have also that these conditions are necessary, i.e. we can always use any of the
semimetrics ρp. This is not obvious form the theorem but we don’t discuss it further here.

3 Back to Empirical Processes

Recal the notations:

Pn = n−1
n∑
i=1

δXi

F = f : X 7→ R : f measurable

f 7→ Pnf = n−1
n∑
i=1

f(Xi), with Qf =

∫
fdQ

The centered and scaled version of Pnf is the empirical process indexed by F :

f 7→ Gnf =
√
n(Pnf − Pf) =

√
n

∑n
i=1 f(Xi)− Pf

n

We are interested in giving conditions on the classes F such that we have:

• ||Pn − P ||F = supf∈F ||(Pn − P )f || → 0, outer almost surely

• Gn  G, in `∞(F)

Clearly we have:

(Gnf1, . . . ,Gnfk) Nk(0,Σ)

Where Σij = P (fi − Pfi)(fj − Pfj).

Therefore if there was a process G to which the empirical process should converge it ought to be a
Gaussian process, {Gf : f ∈ F} with zero mean and covariance function:

EGf1Gf2 = P (f1 − Pf1)(f2 − Pf2) = Pf1f2 − Pf1Pf2

According to one of the lemmas from last time, this and tightness completely characterize the limiting
process.

4 Maximal Inequalities

In order for us to deal with properties like the, stochastic equicontinuity we need to establish several
very useful inequalities.

Definition. Orlicz norm of a non-decreasing, convex function ψ with ψ(0) = 0 for a random
variable X: ||X||ψ is defined as:

||X||ψ = inf{C > 0 : Eψ

(
|X|
C

)
≤ 1}

3



Verifying that this is a norm is left as an exercise. Hint: consider multiplying by
||X||ψ

||X||ψ+||Y ||ψ and
||Y ||ψ

||X||ψ+||Y ||ψ .

Examples of these norms include ψ(x) = xp, p ≥ 1 which gives the usual Lp norm – (E ||X||p)1/p.
Another example which we are going to be using more is the function ψp(x) = exp(xp) − 1. The
latter function gives much more weight to the tails of the distribution. We have that xp ≤ ψp(x)
which implies that ||X||p ≤ ||X||ψp .

We have the following two inequalities for the ψp norms:

||X||ψp ≤ ||X||ψq (log 2)p/q, for p ≤ q
||X||p ≤ p!||X||ψ1

They are left as an exercise. Hints: for the first one note that the function φ for which ψp(x(log 2)1/p) =
φ(ψq(x(log 2)1/q)) is a concave function with φ(1) = 1, so you can use Jensen’s inequality. For the
second one just use a Taylor expansion. These inequalities imply that up to constants (which are
irrelevant for our purposes) the ψp give better bounds than the Lp norms.

We can use Orlicz norms in conjunction with Markov’s inequality to obtain tail bounds of random
variables:

P (|X| > x) = P (ψ(|X|/||X||ψ) > ψ(x/||X||ψ)) ≤ Eψ(|X|/||X||ψ)

ψ(x/||X||ψ)
≤ 1

ψ(x/||X||ψ)

When ψ is ψp this leads to abound of the sort exp(−Cxp). In the case when ψ is ψ2 we get a a
Gaussian tail bound, which explains our interest in this type of norms. Conversely, having a random
variable with such a tail bound, shows that ||X||ψp is finite, as we can reassure from the following
lemma:

Lemma. Let X be a random variable with P (|X| > x) ≤ K exp(−Cxp), for every x for some
constants K and C, and for p ≥ 1. Then its Orlicz norm satisfies ||X||ψp ≤ ((1 +K)/C)1/p.

Proof. We have the following series of inequalities:

E exp(|X|p/R)− 1 = E

∫ |X|p
0

1

R
exp(x/R)dx = E

∫ ∞
0

1x<|X|p
1

R
exp(x/R)dx

=

∫ ∞
0

P (|X| > x1/p)
1

R
exp(x/R)dx ≤

∫ ∞
0

K exp(−Cx)
1

R
exp(x/R)dx

≤ K/R 1

C − 1/R
=

K

CR− 1

When R = (1 + K)/C we have that the expectation above is bounded by 1, which completes the
proof. (Technically we had to consider the case when 1/||X||ψ > C but if this holds the bound we
claim will still hold)

Note that for Lp norms we have the following:

∣∣∣∣∣∣∣∣ max
1≤i≤m

Xi

∣∣∣∣∣∣∣∣
p

=

(
E max

1≤i≤m
|Xi|p

)1/p

≤ m1/p max
1≤i≤m

||Xi||p

Next time we continue with a similar inequality for ψ norms.
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