Introduction to Empirical Process Theory

Lab 1, BIO251
02/03/2014

1 Introduction

1.1 Historical Motivation

Historically, empirical processes theory formally started with the interest of people in the empirical
distribution function. The empirical distribution is given by:
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Where X; are iid random elements defined on a measurable space (X,.4). A natural candidate to
what the empirical distribution converges as a function, is of course the pointwise expected value of
the empirical distribution function, to which it’s consistent at each fixed x by the LLN.

Glivenko-Cantelli’s theorem (1933) formalizes this intuition, and shows the uniform convergence of
F,(z) to F(x) = P(X < x), i.e. sup, |Fn(z) — F| = 0.

. . . D
Note. we will use the notation ~~ instead of = for weak convergence.

It was then clear that if GC-theorem gives rise to some uniform law of large numbers, there must
be some equivalent of the CLT in that case.

Kolmogorov-Smirnov test nonparametric test statistic for testing whether a distribution comes from
a given distribution is one of the seminal works in that direction. The test statistic is |F,, — F|x.
Kolmogorov and Smirnov derived the asymptotic distribution of the statistic using direct arguments.
In fact it turns out that (under the null) \/nsup, |F,(z) — F(z)| = v/n|F, — F|s ~ sup,, |B(F(x))|,
where B(z) here is the Brownian Bridge, which is an example of a Gaussian Process.

From the standard CLT we know that for each fixed ¢: /n(F,(t) — F(t)) ~ G(t), where we have
Cov(G(t),G(s)) = F(s At) — F(s)F(t). In fact Donsker (1952) showed that something much
more powerful is true G,, = /n(F, — F) ~ G, where G here is a 0 mean Gaussian process, with
E(G(s)G(t)) = F(s At) — F(s)F(t). Another way of stating the same result, which underlines the
difference between Donsker’s result and the CLT is that G,, ~ G in £>°(R), where for any index set
T, ¢>°(T) is the collection of all bounded functions f : T — R.

As it is well known (ha-ha!) the Brownian bridge process (restricted on the unit interval) is a Gaus-
sian process that has exactly the same covariance structure: s At — st. It can be seen that the
process G can be re-expressed as B(F(t)). Now with another (giant) leap of faith, that we can use
something like a continuous mapping theorem, it should be believable that the KS test, asymptotic
distribution is correct.



1.2 Abstract Formulation

Now let’s take time to view the modern thinking and notation in the empirical process theory. Grad-
ually people realized that the theory for the empirical distribution function, that we just mentioned,
i.e. Glivenko-Cantelli’s and Dosnker’s theorems, can be verified over a much broader classes of pro-
cesses rather than just the empirical distribution.

Define the empirical measure P,, = n=* Y " | dx,. For a given set C' it can be seen that, P,(C) =
n1#(1 <i<n:X; €C). Let F be a collection of measurable functions. Define a map from F to
R by:

FoBaf =23 5(X0)
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The abbreviation Qf = [ fd@ for a measurable function f and a measure ) is common in empirical
process theory, and means nothing but the expectation of f under the measure ). The centered
and scaled version of this map, is called the empirical process G,, and is given by:

Where here by P we mean the probability law of the random elements X;. What can we say is true
by LLN and CLT in this case, provided that Pf exists, and Pf? < co?

Define ||Q||7 = sup{Qf : f € F}, under this notation a uniform version of the LLN would look like:

[P, — Pl|l7 — 0

The convergence above is in (outer) probability. A class of functions F for which this is true is called
a Glivenko-Cantelli class, or P-Glivenko-Cantelli to stress on the dependence on the measure P.

We can further view the empirical process {G, f : f € F} as a map into £>°(F) (provided we have
assumed sup | f(x) — Pf| < oo for all ). Therefore it makes sense to search for conditions on F so
that:

Gn = Vn(P, — P) ~ G, in {*°(F)

Such a class is called a Donsker class, or a P-Donsker class. We can still claim by standard multi-
variate CLT argument that the finite dimensional distributions of the process, i.e. for any finite set
of functions f1, ..., fr we would have:

(Gnfiy-- s Gufr) ~ Ng(0,%)

Where %5 = P(f; — Pf;)(f; — Pf;)-

We conclude this section by translating the more abstract second part, to the first part with a simple
example.

Example Let X1,...,X,, be iid random elements in R, and let F be the collation of all indicators
{1((—o0,t]) : t € R)}. Then we can identiy the empirical measure with the empirical distribution
function.



2 OQuter Integrals

In order for us to be able to write ~», and talk about processes we need to define these notions
(which takes quite a bit of effort).

To elaborate on the difficulty of the weak convergence let (D, d) is a metric space and P,, and P are
Borel probability measures on (D, D), where D is the Borel o-field on D. We say that P, ~ P, if
and only if:

/fdPn — / fdP, for all f e Cyp(D)
D D

where Cy(D) is the space of bounded and continuous functions f : D — R. Equivalently if X,, and
X are random variables we have that X,, ~» X, if and only if:

E f(X,) = E f(X), for all f € Cy(D)

A key requirement that is hidden here is that the measures P, is defined for each n of the Borel o-
field D, or equivalently that the random variables X,,, are defined on probability spaces (2, An, Py)
such that X, 1(D) € A,, for each D € D.

Example. An example where this seemingly unimportant restriction fails, is the Skorohod space
D = D[0, 1] of all right-continuous functions with left hand limits, equipped with the uniform metric
(the sup metric, that it inherits from ¢°°(]0,1])). Consider a one sample empirical process defined
as X :[0,1] = D, defined through X (w) = 1y, 1. If [0, 1] is equipped with the Borel o-field, then X
is not Borel not measurable.

To see this let By be the open ball of radius 1/2 in D around the function 1, ;). For any S C [0, 1]
then the set G = UsegBs is open. Now X (w) € By is equivalent to w = s (draw a pic!), implying
that X ~}(G) = S. Therefore if X ought to be measurable every subset of [0,1] should be open

which is apparently not true.

This surprising fact happens because the o-field on D is simply too big. Therefore people started
asking themselves alternative ways to define, weak convergence.

So one idea to approach this problem is to define the outer integral. Let (Q, A, P) is a probability
space, and T : Q — R = RU{—o00,00}. The outer integral of T' with respect to P is defined through:

E*T =inf{EU : U > T,U : Q + R measurable and EU exists}

Similarly we can define the outer probability:

P*(B) =inf{P(A),AD B,A e A}

The inner probability and inner expectation can be defined in a similar way, or directly by: E, T =
—E*-T, and P,(B) =1- P*(2— B).

We next prove a useful lemma, and comment on properties of the outer expectation.



Measurable Cover Function. For any map 7 :  — R, there exists a measurable function 7°*
with:

i) T*>T
(ii) T* < U a.s., for every measurable U : Q — R = with U > T a.s.

For any T™ with the above requirements we have E* T' = ET*, provided that E T* exists. If E* T < oo
then the last requirement is necessarily true.

Proof:
Choose a measurable sequence U,, > T with EarctanU,, | E* arctan T, and set:

T*(w) = lim inf Ug(w)

m—oo 1<k<m

As defined the function T™* is measurable (why?), and takes values on the extended real line, and
T* > T. By monotone convergence EarctanT* = E* arctanT. For every measurable U > T we
have that arctanU A T* > arctanT, and therefore EarctanU A T* > E* arctanT = EarctanT*.
This of course implies that U > T™ a.s.

(1) (ii)
If ET* exists then we get that ET* > E*T > ET*. If E*T < oo, then there exists a measurable
function U with EUT < oo, which implies E(T*)T < EUT < oo, and thus ET™* exists.

After this fact we state (without proof) some properties of outer expectations:

Lemma The following statements are true for arbitrary maps S, 7T : Q — R.

(i

(ii

(S+T)* < S*+T*, with equality when S is measurable
(S—T) > S5*-—1T*

(SVT) =8*VT*

)
)
(iii) [S* —T*| < |S - T
(iv)
(v)

Fubini’s Theorem Let T be defined on a product probability space. Then E,T < Fq,F, T <
EfE5T <E'T.

(SAT)* < §* AT*

Monotone and dominated convergence theorems stay true for outer expectations.
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