
Weak Convergence Spaces of Bounded Functions

Weak Convergence and Spaces of Bounded
Funcitons

BIO 251,
Lab 2

Feb 10, 2014



Weak Convergence Spaces of Bounded Functions

Weak Convegence

The “weak convergence of laws without laws being defined” –
except asymptotically.
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Tightness

Tightness

Definition. A Borel probability measure L is tight if for every
ε > 0, there exists a compact set K , such that: L(K ) ≥ 1− ε.
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Weak Convergence

Weak Convergence

Definition. Let (Ωn,An,Pn) are sets of probability spaces and
Xn : Ωn 7→ D are arbitrary maps. The sequence Xn converges
weakly to a Borel measure L if:

E∗ f (Xn)→
∫

fdL, for all f ∈ Cb(D)

We denote weak convergence by Xn  L.
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Weak Convergence

Theorem (Portmanteau).

TFAE:

(i) Xn  L

(ii) lim inf P∗(Xn ∈ G ) ≥ L(G ), for every open G

(iii) lim supP∗(Xn ∈ F ) ≤ L(F ), for every closed F

(iv) lim inf E∗ f (Xn) ≥
∫
fdL for every lower semincontinuous,

bounded from below f

(v) lim sup E∗ f (Xn) ≤
∫
fdL for every upper semicontinuous,

bounded from above f

(vi) limP∗(Xn ∈ B) = limP∗(Xn ∈ B) = L(B) for every Borel set
B with L(δB) = 0.

(vii) lim inf E∗ f (Xn) ≥
∫
fdL for every bounded, Lipschitz

continuous, nonnegative f .
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Continuous Mapping Theorem

Theorem (Continuous Mapping).

Let g : D 7→ E, is a continuous at every point of a set D0 ⊂ D. If
Xn  X and X takes values in D0, we have g(Xn) g(X ).
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Asymptotic Measurability and Tightness

Asymptotic Measurability

Definition. The sequence of maps Xn is asymptotically
measurable iff

E∗ f (Xn)− E∗ f (Xn)→ 0, for every f ∈ Cb(D)

Asymptotic Tightness

Definition. The sequence Xn is asymptotically tight if for every
ε > 0 there exists a compact set K such thats:

lim inf P∗(Xn ∈ K δ) ≥ 1− ε for every δ > 0

Where K δ = {y ∈ D : d(y ,K ) < δ} is the δ-enlargement around K



Weak Convergence Spaces of Bounded Functions

Prohorov’s Theorem

Lemma.

(i) If Xn  X , then Xn is asymptotically measurable

(ii) If Xn  X , then X is tight iff Xn is asymptotically tight.

Theorem (Prohorov).

If the sequence Xn is asymptotically tight and asymptotically
measurable, there exists a subsequence Xnj which converges weakly
to a tight Borel law.
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Is weak convergence different in a subspace?

Theorem.

Let D0 ⊂ D be arbitrary and let X and Xn take values in D0. Then
Xn  X as maps in D0 iff Xn  X as maps in D. Here D0 and D
are equipped with the same metric.
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Is weak convergence to a unique law?

Lemma.

(i) Let L1 and L2 are finite Borel measures on D. If∫
fdL1 =

∫
fdL2 for all f ∈ Cb(D) then L1 ≡ L2.

(ii) Let L1 and L2 be tight Borel probability measures on D. If∫
fdL1 =

∫
fdL2 for every f in a vector lattice F ⊂ Cb(D) that

contains the constant functions, and separates the points in
D, then L1 ≡ L2.

Here vector lattice means a vector space of functions F such that
f ∈ F it follows that f + = f ∨ 0 ∈ F . F is said to separate the
points if for every two points x 6= y there exists f ∈ F such that
f (x) 6= f (y).
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How to show asymptotic measurability

Lemma.

Let Xn be asymptotically tight, and suppose that
E∗ f (Xn)− E∗ f (Xn)→ 0 holds for f ∈ F , where F is a subalgebra
of Cb(D), which separates the points of D. Then Xn is
asymptotically measurable.

A subalgebra is a vector space that in addition is closed under
taking products.
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Space of Bounded Functions

Let T be an arbitrary set.

The space `∞(T ) is defined as the set of all uniformly
bounded real functions z : T 7→ R with:

||z ||T := sup
t∈T
|z(t)| <∞
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Stochastic Process

Stochastic Process

Definition. A stochastic process is an indexed collection of
random variables {X (t) : t ∈ T} defined on the
same probability space:

i.e. every X (t) : Ω 7→ R is a measurable map.

If the sample paths t 7→ X (t, ω) are bounded, then a
stochastic process yields a map X : Ω 7→ `∞(T ).
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Two Lemmas

Lemma 1.

Let Xn : Ωn 7→ `∞(T ) be asymptotically tight. Then it is
asymptotically measurable iff Xn(t) is asymptotically measurable
for every t ∈ T .

Lemma 2.

Let X and Y be tight Borel measurable maps into `∞(T ). Then X
and Y are equal in Borel law iff all corresponding marginals of X
and Y are equal in law.



Weak Convergence Spaces of Bounded Functions

And a Theorem

Theorem.

(i) Let Xn : Ωn 7→ `∞(T ) be arbitrary. Then Xn converges weakly
to a tight limit iff Xn is asymptotically tight, and the
marginals (Xn(t1), . . . ,Xn(tk)) converge weakly to a limit for
every finite subset t1, . . . , tk of T .

(ii) If Xn is asymptotically tight and it’s marginals converge
weakly to the marginals (X (t1), . . . ,X (tk)) of a stochastic
process X then there is a version of X with uniformly bounded
sample paths and Xn  X .
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