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1 Introduction

1.1 Historical Motivation

Historically, empirical processes theory formally started with the interest of people in the empirical
distribution function. The empirical distribution is given by:

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x)

Where Xi are iid random elements defined on a measurable space (X ,A). A natural candidate to
what the empirical distribution converges as a function, is of course the pointwise expected value of
the empirical distribution function, to which it’s consistent at each fixed x by the LLN.

Glivenko-Cantelli ’s theorem (1933) formalizes this intuition, and shows the uniform convergence of
Fn(x) to F (x) = P (X ≤ x), i.e. supx |Fn(x)− F | → 0 .

Note. we will use the notation  instead of
D→ for weak convergence.

It was then clear that if GC-theorem gives rise to some uniform law of large numbers, there must
be some equivalent of the CLT in that case.

Kolmogorov-Smirnov test nonparametric test statistic for testing whether a distribution comes from
a given distribution is one of the seminal works in that direction. The test statistic is |Fn − F |∞.
Kolmogorov and Smirnov derived the asymptotic distribution of the statistic using direct arguments.
In fact it turns out that (under the null)

√
n supx |Fn(x)−F (x)| =

√
n|Fn−F |∞  supx |B(F (x))|,

where B(x) here is the Brownian Bridge, which is an example of a Gaussian Process.

From the standard CLT we know that for each fixed t:
√
n(Fn(t) − F (t))  G(t), where we have

Cov(G(t), G(s)) = F (s ∧ t) − F (s)F (t). In fact Donsker (1952) showed that something much
more powerful is true Gn =

√
n(Fn − F )  G, where G here is a 0 mean Gaussian process, with

E(G(s)G(t)) = F (s ∧ t) − F (s)F (t). Another way of stating the same result, which underlines the
difference between Donsker’s result and the CLT is that Gn  G in `∞(R), where for any index set
T , `∞(T ) is the collection of all bounded functions f : T → R.

As it is well known (ha-ha!) the Brownian bridge process (restricted on the unit interval) is a Gaus-
sian process that has exactly the same covariance structure: s ∧ t − st. It can be seen that the
process G can be re-expressed as B(F (t)). Now with another (giant) leap of faith, that we can use
something like a continuous mapping theorem, it should be believable that the KS test, asymptotic
distribution is correct.
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1.2 Abstract Formulation

Now let’s take time to view the modern thinking and notation in the empirical process theory. Grad-
ually people realized that the theory for the empirical distribution function, that we just mentioned,
i.e. Glivenko-Cantelli’s and Dosnker’s theorems, can be verified over a much broader classes of pro-
cesses rather than just the empirical distribution.

Define the empirical measure Pn = n−1
∑n

i=1 δXi
. For a given set C it can be seen that, Pn(C) =

n−1#(1 ≤ i ≤ n : Xi ∈ C). Let F be a collection of measurable functions. Define a map from F to
R by:

f 7→ Pnf =
1

n

n∑
i=1

f(Xi)

The abbreviation Qf =
∫
fdQ for a measurable function f and a measure Q is common in empirical

process theory, and means nothing but the expectation of f under the measure Q. The centered
and scaled version of this map, is called the empirical process Gn and is given by:

f 7→ Gnf =
√
n(Pnf − Pf)

Where here by P we mean the probability law of the random elements Xi. What can we say is true
by LLN and CLT in this case, provided that Pf exists, and Pf2 <∞?

Define ||Q||F = sup{Qf : f ∈ F}, under this notation a uniform version of the LLN would look like:

||Pn − P ||F → 0

The convergence above is in (outer) probability. A class of functions F for which this is true is called
a Glivenko-Cantelli class, or P -Glivenko-Cantelli to stress on the dependence on the measure P .

We can further view the empirical process {Gnf : f ∈ F} as a map into `∞(F) (provided we have
assumed supf |f(x)−Pf | <∞ for all x). Therefore it makes sense to search for conditions on F so
that:

Gn =
√
n(Pn − P ) G, in `∞(F)

Such a class is called a Donsker class, or a P -Donsker class. We can still claim by standard multi-
variate CLT argument that the finite dimensional distributions of the process, i.e. for any finite set
of functions f1, . . . , fk we would have:

(Gnf1, . . . ,Gnfk) Nk(0,Σ)

Where Σij = P (fi − Pfi)(fj − Pfj).

We conclude this section by translating the more abstract second part, to the first part with a simple
example.

Example Let X1, . . . , Xn be iid random elements in R, and let F be the collation of all indicators
{1((−∞, t]) : t ∈ R)}. Then we can identiy the empirical measure with the empirical distribution
function.
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2 Outer Integrals

In order for us to be able to write  , and talk about processes we need to define these notions
(which takes quite a bit of effort).

To elaborate on the difficulty of the weak convergence let (D, d) is a metric space and Pn and P are
Borel probability measures on (D,D), where D is the Borel σ-field on D. We say that Pn  P , if
and only if:

∫
D
fdPn →

∫
D
fdP, for all f ∈ Cb(D)

where Cb(D) is the space of bounded and continuous functions f : D 7→ R. Equivalently if Xn and
X are random variables we have that Xn  X, if and only if:

E f(Xn)→ E f(X), for all f ∈ Cb(D)

A key requirement that is hidden here is that the measures Pn is defined for each n of the Borel σ-
field D, or equivalently that the random variables Xn, are defined on probability spaces (Ωn,An, Pn)
such that X−1n (D) ∈ An for each D ∈ D.

Example. An example where this seemingly unimportant restriction fails, is the Skorohod space
D = D[0, 1] of all right-continuous functions with left hand limits, equipped with the uniform metric
(the sup metric, that it inherits from `∞([0, 1])). Consider a one sample empirical process defined
as X : [0, 1] 7→ D, defined through X(ω) = 1[ω,1]. If [0, 1] is equipped with the Borel σ-field, then X
is not Borel not measurable.

To see this let Bs be the open ball of radius 1/2 in D around the function 1[s,1]. For any S ⊂ [0, 1]
then the set G = ∪s∈SBs is open. Now X(ω) ∈ Bs is equivalent to ω = s (draw a pic!), implying
that X−1(G) = S. Therefore if X ought to be measurable every subset of [0, 1] should be open
which is apparently not true.

This surprising fact happens because the σ-field on D is simply too big. Therefore people started
asking themselves alternative ways to define, weak convergence.

So one idea to approach this problem is to define the outer integral. Let (Ω,A, P ) is a probability
space, and T : Ω 7→ R̄ = R∪{−∞,∞}. The outer integral of T with respect to P is defined through:

E∗ T = inf{EU : U ≥ T,U : Ω 7→ R̄ measurable and EU exists}

Similarly we can define the outer probability :

P ∗(B) = inf{P (A), A ⊃ B,A ∈ A}

The inner probability and inner expectation can be defined in a similar way, or directly by: E∗ T =
−E∗−T , and P∗(B) = 1− P ∗(Ω−B).

We next prove a useful lemma, and comment on properties of the outer expectation.
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Measurable Cover Function. For any map T : Ω 7→ R̄, there exists a measurable function T ∗

with:

(i) T ∗ ≥ T

(ii) T ∗ ≤ U a.s., for every measurable U : Ω 7→ R̄ = with U ≥ T a.s.

For any T ∗ with the above requirements we have E∗ T = ET ∗, provided that ET ∗ exists. If E∗ T <∞
then the last requirement is necessarily true.

Proof:
Choose a measurable sequence Um ≥ T with E arctanUm ↓ E∗ arctanT , and set:

T ∗(ω) = lim
m→∞

inf
1≤k≤m

Uk(ω)

As defined the function T ∗ is measurable (why?), and takes values on the extended real line, and
T ∗ ≥ T . By monotone convergence E arctanT ∗ = E∗ arctanT . For every measurable U ≥ T we
have that arctanU ∧ T ∗ ≥ arctanT , and therefore E arctanU ∧ T ∗ ≥ E∗ arctanT = E arctanT ∗.
This of course implies that U ≥ T ∗ a.s.

If ET ∗ exists then we get that ET ∗
(i)

≥ E∗ T
(ii)

≥ ET ∗. If E∗ T <∞, then there exists a measurable
function U with EU+ <∞, which implies E(T ∗)+ ≤ EU+ <∞, and thus ET ∗ exists.

After this fact we state (without proof) some properties of outer expectations:

Lemma The following statements are true for arbitrary maps S, T : Ω 7→ R̄.

(i) (S + T )∗ ≤ S∗ + T ∗, with equality when S is measurable

(ii) (S − T )∗ ≥ S∗ − T ∗

(iii) |S∗ − T ∗| ≤ |S − T |∗

(iv) (S ∨ T )∗ = S∗ ∨ T ∗

(v) (S ∧ T )∗ ≤ S∗ ∧ T ∗

Fubini’s Theorem Let T be defined on a product probability space. Then E∗ T ≤ E1∗E2∗T ≤
E∗1E

∗
2T ≤ E∗ T .

Monotone and dominated convergence theorems stay true for outer expectations.
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