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1 Weak Convergence

In this section we formalize weak convergence on metric spaces. Let (D, d) and (E, e) be metric
spaces. Denote the continuous bounded functions f : D→ R with Cb(D). In the empirical processes
applications the space D = `∞(T ) under the sup metric.

Definition. A Borel probability measure L is tight if for every ε > 0, there exists a compact set K,
such that: L(K) ≥ 1− ε.

Definition. Let (Ωn,An, Pn) are sets of probability spaces and Xn : Ωn 7→ D are arbitrary maps.
The sequence Xn converges weakly to a Borel measure L if:

E∗ f(Xn)→
∫
fdL, for all f ∈ Cb(D)

We denote weak convergence by Xn  L. If X has Borel law L, we also say that Xn  X. We will
assume that X is measurable.

Consider the following equivalent ways of defining weak convergence in the following theorem:

Theorem (Portmanteau). TFAE:

(i) Xn  L

(ii) lim inf P∗(Xn ∈ G) ≥ L(G), for every open G

(iii) lim supP ∗(Xn ∈ F ) ≤ L(F ), for every closed F

(iv) lim inf E∗ f(Xn) ≥
∫
fdL, for every lower semincontinuous, bounded from below f

(v) lim sup E∗ f(Xn) ≤
∫
fdL, for every upper semicontinuous, bounded from above f

(vi) limP ∗(Xn ∈ B) = limP∗(Xn ∈ B) = L(B) for every Borel set B with L(δB) = 0.

(vii) lim inf E∗ f(Xn) ≥
∫
fdL for every bounded, Lipschitz continuous, nonnegative f .

Partial Proof: Here we prove few selected parts of the theorem. The equivalence between (ii)
and (iii) is obvious after taking complements. Similarly the equivalence of (iv) and (v) follows after
substituting f with −f . The fact that (i) implies (vii) is obvious since a bounded Lipschitz con-
tinuous function is necessarily continuous, and it remains to apply the definition of inner expectation.

Another obvious implication is the fact that (iv) and (v) imply (i). Since (iv) and (v) are equivalent
then (v) implies (i).
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As an exercise we show that (vii) implies (ii). Other of the implications follow in a similar spirit.
Take an open set G, and construct a sequence of Lipschitz functions fm such that fm ↑ 1G. An
example of such a sequence is fm = md(x,D−G) ∧ 1. We have by (vii) that:

lim inf E∗ fm(Xn) ≥
∫
fmdL

Letting m→∞ gives us (ii). (note that E∗ 1G(Xn) ≥ E∗ fm(Xn) for all m and n)

A very important consequence of the definition of weak convergence is without a doubt the contin-
uous mapping theorem:

Theorem (Continuous Mapping). Let g : D 7→ E, is a continuous at every point of a set D0 ⊂ D.
If Xn  X and X takes values in D0, we have g(Xn) g(X).

Continuous mapping theorem is not hard to show using the portmanteau theorem. Next by impor-
tance to the continuous mapping theorem for weak convergence is Prohorov’s theorem. We need a
couple of more definitions to get there.

Definition. The sequence of maps Xn is asymptotically measurable iff

E∗ f(Xn)− E∗ f(Xn)→ 0, for every f ∈ Cb(D)

Definition. The sequence Xn is asymptotically tight if for every ε > 0 there exists a compact set
K such thats:

lim inf P∗(Xn ∈ Kδ) ≥ 1− ε for every δ > 0

Where Kδ = {y ∈ D : d(y,K) < δ} is the “δ-enlargement” around K

Lemma.

(i) If Xn  X, then Xn is asymptotically measurable

(ii) If Xn  X, then X is tight iff Xn is asymptotically tight.

Proof. Part (i) is straightforward because by definition of weak convergence we have lim E∗ f(Xn)→
E f(X) and − lim E∗ f(Xn) = lim E∗−f(Xn) = lim E−f(X) = − lim E f(X).

For part (ii) we apply the portmanteau theorem. First let X be tight. Fix an ε > 0, and let K be
the compact set corresponding to it such that P (X ∈ K) ≥ 1 − ε. By part (ii) for any δ > 0, we
have that lim inf P∗(Xn ∈ Kδ) ≥ P (X ∈ Kδ) ≥ P (X ∈ K) ≥ 1− ε.

Conversely, let Xn be asymptotically tight. For a fixed ε > 0 take the compact set K form the defi-
nition. From part (iii) we have P (X ∈ Kδ) ≥ lim supP ∗(Xn ∈ Kδ) ≥ lim inf P∗(Xn ∈ Kδ) ≥ 1− ε.
Let δ → 0.

Now we are ready to state Prohorov’s theorem, which can be viewed as a converse to the previous
lemma.

Theorem (Prohorov). If the sequence Xn is asymptotically tight and asymptotically measurable,
there exists a subsequence Xnj

which converges weakly to a tight Borel law.
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Often times, in empirical process theory some processes map into spaces that are proper subsets of
`∞(T ), like D(T ) the Skorohod space. Regardless of this fact, if the metrics are kept the same (or
the topology in the subspace is taken to be the relative topology) weak convergence is the same.
This will be formalized in the following theorem:

Theorem. Let D0 ⊂ D be arbitrary and let X and Xn take values in D0. Then Xn  X as maps
in D0 iff Xn  X as maps in D. Here D0 and D are equipped with the same metric.

Proof: Since an open set in G0 in D0 has the form G0 = G ∩ D0, for some open G in D, by (ii) in
portmanteau theorem we get:

lim inf P∗(Xn ∈ G ∩ D0) ≥ P (X ∈ G ∩ D0)

However in the last expression P∗(Xn ∈ G ∩ D0) = P∗(Xn ∈ G), P (X ∈ G ∩ D0) = P (X ∈ G) since
Xn and X take their values on the space D0. Since this is true for all open G in D this finishes the
proof.

Finally there is the question whether weak convergence is to a unique Borel law or there might be
more than one laws. The negative answer is provided by the following lemma:

Lemma.

(i) Let L1 and L2 are finite Borel measures on D. If
∫
fdL1 =

∫
fdL2 for all f ∈ Cb(D) then

L1 ≡ L2.

(ii) Let L1 and L2 be tight Borel probability measures on D. If
∫
fdL1 =

∫
fdL2 for every f in a

vector lattice F ⊂ Cb(D) that contains the constant functions, and separates the points in D,
then L1 ≡ L2.

Here vector lattice means a vector space of functions F such that f ∈ F it follows that
f+ = f ∨ 0 ∈ F . F is said to separate the points if for every two points x 6= y there exists
f ∈ F such that f(x) 6= f(y).

To help establishing asymptotic measurability in practice we need the following lemma:

Lemma. Let Xn be asymptotically tight, and suppose that E∗ f(Xn) − E∗ f(Xn) → 0 holds for
f ∈ F , where F is a subalgebra of Cb(D), which separates the points of D. Then Xn is asymptoti-
cally measurable.

A subalgebra is a vector space that in addition is closed under taking products.

Slutsky’s Lemma If Xn  X and Yn  c with X being separable (i.e. there exists separable,
measurable set with prob 1) and c a constant, then (Xn, Yn) (X, c).

2 Spaces of Bounded Functions

Let T be an arbitrary set. The space `∞(T ) is defined as the set of all uniformly bounded real
functions z : T 7→ R with:

||z||T := sup
t∈T
|z(t)| <∞

Definition. A stochastic process is simply an indexed collection of random variables {X(t) : t ∈ T}
defined on the same probability space: every X(t) : Ω 7→ R is a measurable map. If the sample paths

3



t 7→ X(t, ω) are bounded, then a stochastic process yields a map X : Ω 7→ `∞(T ).

The amount of measurability given by the stochastic process definition, might already be enough
for asymptotic measurability. The marginals (X(t1), X(t2), . . . , X(tk)) play a special role for weak
convergence, when considered as maps into Rk, and this is obvious after the following three lemmas.

Lemma 1. Let Xn : Ωn 7→ `∞(T ) be asymptotically tight. Then it is asymptotically measurable
iff Xn(t) is asymptotically measurable for every t ∈ T .

Lemma 2. Let X and Y be tight Borel measurable maps into `∞(T ). Then X and Y are equal in
Borel law iff all corresponding marginals of X and Y are equal in law.

Theorem. Let Xn : Ωn 7→ `∞(T ) be arbitrary. Then Xn converges weakly to a tight limit iff Xn

is asymptotically tight, and the marginals (Xn(t1), . . . , Xn(tk)) converge weakly to a limit for every
finite subset t1, . . . , tk of T . If Xn is asymptotically tight and it’s marginals converge weakly to the
marginals (X(t1), . . . , X(tk)) of a stochastic process X then there is a version of X with uniformly
bounded sample paths and Xn  X.

Proofs. For the first two lemmas consider the collections of functions F , s.t. for f ∈ F we have
f : `∞(T ) 7→ R of the form:

f(z) = g(z(t1), . . . , z(tk)), g ∈ Cb(Rk), ti ∈ T, k ∈ N

Obviously, F forms a vector lattice and a subalgebra, and contains the constant functions, since
the functions g would stay bounded under multiplication or taking the positive parts. Furthermore,
it also separates the points as if two functions z1 6= z2 differ at time t ∈ T , then the projection
f(z) = z(t) (note that this is a continuous function) separates the two points and f ∈ F .

Lemma 1. Assume X is asymptotically measurable. Then set f(Xn) = g(Xn(t)) to be the pro-
jection on t and then asymptotic measurability follows by the definition. Conversely assume that
Xn(t) is asymptotically measurable for all t. Using the fact that asymptotic measurability of two
random elements implies their joint asymptotic measurability (not trivial needs proof but we omit
it!) we can see that all finite dimensional marginals are asymptotically measurable. Then the last
lemma of the weak convergence section and the fact that F is a subalgebra give us the desired result.

Lemma 2. If X = Y , then the marginals ought to be the same. If the marginals are the same the
fact that F is a lattice containing constants, and separating the points, we get that X = Y from
part (ii) of the next to last lemma of the weak convergence section.

Theorem Proof. If Xn is asymptotically tight and the converge marginals weakly to a tight limit,
then by Lemma 1 Xn is asymptotically measurable. Now we can apply Prohorov’s theorem to get
that we can divide Xn into subsequences each of which is converging weakly to a tight limit. If we
show that each limit is the same we are done. Because we have the marginal convergence (on all
subsequences), and Lemma 2 this finishes the proof in this direction. Now if Xn converges to a tight
limit we know that this is equivalent to Xn being asymptotically tight. Furthermore the marginals
weak convergence comes as an implication of the continuous mapping theorem (note that the map
f(z) = (z(t1), . . . , z(tk)) is continuous for z ∈ `∞(T )).

Finally note that if Xn is asymptotically tight and the marginals converge, by the first part we have
that Xn  X, where X is tight limit. Furthermore, since X is tight, then it concentrates on a σ-
compact set K ⊂ `∞(T ) with P (X ∈ K) = 1. The last implication shows the uniform boundedness
of the sample paths.
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