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1 Glivenko-Cantelli Theorems

Theorem. Let F be a P -measurable class of measurable functions with envelope F such that P ∗F <
∞. Let FM be the class of functions f1F≤M when f ranges over F . If logN(ε,FM , L1(Pn)) = o∗P (n)
for every ε and M > 0, then ||Pn − P ||∗F → 0 both almost surely and in mean. In particular F is a
GC class.

Proof. By symmetrization and measurability of the class F , and Fubini’s theorem we have:
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Where we used the triangle inequality for the last inequality. We can make the right term arbitrary
small by picking a large enough M . To show convergence in mean, it suffices to show that the first
term goes to 0 for a fixed M . Fix X1, X2, . . . , Xn. Define G to be an ε-net in L1(Pn) over FM . We
then have:
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Details on this inequality can be found in the appendix. Note here that the size of G can be selected
to be N(ε,FM , L1(Pn)). Now as we know from last time the Rademacher process is sub-Gaussian,

and then we can bound the Orlicz norm ψ2(x) = ex
2 − 1. Before that we make use of the maximal

inequality we derived last time to get that the expression above is further bounded by a multiple of:
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In the above we used the obvious inequality log(1 + x) ≤ 1 + log(x), and the fact that || · ||1 ≤
|| · ||2 ≤ || · ||ψ2 . Here the Orlizc norm is taken wrt to ε1, . . . , εn holding X1, . . . , Xn fixed. Apply

Hoeffding’s inequality to get a bound
√

6
n (Pnf2)1/2 ≤

√
6
nM (more detail in appendix). Putting

everything together we get:

√
1 + logN(ε,FM , L1(Pn))
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6

n
M + ε

P∗→ ε
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We have shown that holding X1, . . . , Xn fixed the RHS converges to 0. Taking expectation wrt to
X (and noting that everything is bounded by M) we can use the DCT to show it converges to 0.

Thus ||Pn − P ||∗F → 0 in mean. The a.s. convergence follows because ||Pn − P ||∗F is a reverse
submartingale wrt to a suitable filtration. We don’t show this.

Remark As a corollary it can be shown that a sufficient condition so that the random entropy
condition holds is:

sup
Q

logN(ε||F ||Q,1,FM , L1(Q)) <∞

Where the supremum is taken over all finitely discrete measures (so that it coveres all Pn for any
data realization).

2 A Donsker Theorem

We now provide a sufficient condition for a class being Donsker. This condition will be defined in
terms of a “uniform entropy” of the covering numbers, but there are other sufficient conditions using
the entropy of the bracketing numbers which we won’t consider. We have the following result:

Theorem. Let F be a class of measurable functions, with envelope F , that satisfies the following
uniform entropy bound:

∫ ∞
0

sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε <∞

The supremum is taken over all finitely discrete probability measures Q on (X ,A), such that
||F ||2Q,2 =

∫
F 2dQ > 0. Let the classes Fδ = {f − g : f, g ∈ F , ||f − g||P,2 < δ} and F2

∞ =

{f2 : f ∈ F∞} be P -measurable for any δ > 0. If P ∗F 2 <∞, then F is P -Donsker.

Proof. Let δn ↓ 0 be arbitrary. By Markov’s inequality we have:

P ∗(||Gn||Fδn ≥ x) ≤
E∗ ||Gn||Fδn

x

We then use the symmetrization lemma we proved last time:
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Now since we are assuming the class Fδn is P -measurable the E∗ can be replaced by iterative
expectation E∗ = EX Eε. We now fix the values of X1, . . . , Xn. We next apply Hoeffding’s inequality
to the Rademacher process f 7→ {n−1/2

∑n
i=1 εif(Xi)} to conclude that this process is sub-Gaussian

for the L2(Pn)-seminorm:

||f ||n =

√√√√ 1

n

n∑
i=1

f2(Xi)

Now we use the second part of the corollary we derived in the end of Lab 6 (with f0 = 0), to conclude
that:
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Where the last inequality follows upon noting that we can change the variable ε → 1/2ε, and in-
crease the inequality constant a bit.

Note here that when ε is large enough the space Fδn can be contained in only 1 ball. This certainly
happens when ε > θn, where:
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This is true because then we can center a ball at 0 and radius ε to cover the whole class Fδn . Thus
we have:

Eε

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

.
∫ θn

0

√
logN(ε,Fδn , L2(Pn))dε

Furthermore obviously the covering numbers of the class Fδ ⊂ F∞ are bounded by the covering
numbers of F∞. The latter numbers satisfy N(ε,F∞, L2(Q)) ≤ N2(ε/2,F , L2(Q)) for all measures
Q (see why in the appendix). Therefore upon a change of variables, and bounding the integrand we
consequently get:
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∫ θn/||F ||n

0

√
logN(ε||F ||n,F , L2(Pn))dε||F ||n

.
∫ θn/||F ||n
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sup
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logN(ε||F ||Q,2,F , L2(Q))dε||F ||n
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∫ ∞
0

1(ε ≤ θ∗n/||F∗||n)||F ∗||n sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε

Where the supremum is taken over all finitely discrete measures Q (this set trivially incudes Pn
so the bound is trivial in that sense). Note that by doing this trivial bounding we got rid of the
dependence of the integrand on the dataset. The only thing that depend on the dataset still is
1(ε ≤ θ∗n/||F∗||n)||F ∗||n. Everything so far was conditional on the data X1, . . . , Xn.

Note that we can always add the constant 1 to the envelope function F without changing the second
moment condition. We still need to get the expectation EX .This will ensure that F∗ ≥ 1. Taking it
results in:

∫ ∞
0

EX 1(ε ≤ θ∗n/||F∗||n)||F ∗||n sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε

CS
≤
√

EX ||F ∗||2n︸ ︷︷ ︸
O(1)

∫ ∞
0

√
P (ε ≤ θ∗n) sup

Q

√
logN(ε||F ||Q,2,F , L2(Q))dε
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Now since the integrand
√
P (ε ≤ θ∗n) supQ

√
logN(ε||F ||Q,2,F , L2(Q)) ≤ supQ

√
logN(ε||F ||Q,2,F , L2(Q))

which is integrable by our assumption, the Dominated Convergence Theorem would ensure that the

above integral converges to 0 provided that θn
P∗→ 0, which will finish the proof of the asymptotic

equicontinuity because then P (||Gn||Fδn ≥ x) will converge to 0, as δn → 0.

Note that θn =
∣∣∣∣Pnf2∣∣∣∣Fδn . Note then that since sup{Pf2 : f ∈ Fδn} → 0, and Fδn ⊂ F∞, it is

enough to show that:

∣∣∣∣Pnf2 − Pf2∣∣∣∣F∞ → 0

This is of course a ULLN for the class F2
∞. This class has an integrable envelope (2F )2, and is

P -measurable by assumption. For any pair of functions f, g ∈ F∞ we have:

Pn|f2 − g2| ≤ Pn|f − g|4F ≤ ||f − g||n ||4F ||n
Therefore if ||f − g||n ≤ ε||F ||n it follows that Pn|f2 − g2| ≤ ε(2||F ||n)2. This statement translated
to covering numbers is N(ε||2F ||2n,F2

∞, L1(Pn)) ≤ N(ε||F ||n,F∞, L2(Pn)). As we argued earlier we
have:

N(ε||F ||n,F∞, L2(Pn)) ≤ N2(ε||F ||n/2,F , L2(Pn))

and the latter must be a finite number in order for us to have the uniform entropy bounded. It
is shown in the appendix that the condition N(ε||2F ||2n,F2

∞, L1(Pn)) is a finite number implies the
GC condition in the GC theorem above (or you can argue from the remark in the end of section 1).
This concludes the asymptotic equicontinuity part of the proof.

The final step of the proof is to show that, the space F is totally bounded in L2(P ). From the result
that we just showed we know that there exists a sequence of finitely discrete measures Pn such that
||(Pn − P )f2||F∞ converges to 0. Take n sufficiently large so that the supremum is bounded by ε2.
We know that N(ε,F , L2(Pn)) is finite (this can be shown along the lines of the fact shown in the
appendix). Any ε-net for F in L2(Pn) is a

√
2ε-net in L2(P ), since P (f−g)2 ≤ ε2+Pn(f−g)2 ≤ 2ε2.

This concludes the proof.

Example. The set F of all indicator functions 1(−∞,t] of cells in R satisfies:

N(ε,F , L2(Q)) ≤ N[](ε
2,F , L1(Q)) ≤ 2

ε2

for any probability measure and ε ≤ 1, for any probability measure Q. The first inequality follows
from the fact that,

√
Q(f − g)2 =

√
Q|f − g| so that if Q|f−g| ≤ ε2 we would have

√
Q(f − g)2 ≤ ε.

Therefore N(ε,F , L2(Q)) ≤ N(ε2,F , L1(Q)). Furthermore if we have a bracket on the set F – [l, u]
we can put a ball with a center at the function l+u

2 and radius ε2, this ball will obviously cover
all the functions within the bracket. And thus N(ε2,F , L1(Q)) ≤ N[](ε

2,F , L1(Q)). The right
inequality follows because the total probability mass is 1, and we are splitting it in intervals of ε2

we have at most 1/ε2 + 1 ≤ 2/ε2 brackets. Therefore for the uniform entropy in [0, 1] we have

.
∫ 1

0
log(1/ε)dε < ∞. Of course when ε > 1 the number of brackets required is only 1 so that

it’s 0 in the integral. Thus the class F would be Donsker if we can show that Fδ and F2
∞ are

P -measurable. This is not hard however, since Q is dense in R so we can get to the supremums by
countable number of operations.

Compare this result to Slide 55, noteset 2!

We consider much more general classes that satisfy the uniform entropy condition next time.
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A Some Details

Here we give a little more detail for the two inequalities. Note that:
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The ε comes in because for each f ∈ FM we can find a g ∈ G with Pn|f − g| ≤ ε. The difference:

Eε
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For the second inequality, note that by Hoeffding’s we have that the ψ2 norm is bounded by
√

6
√

1
n2
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i=1 f
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√

6
n (Pnf2)1/2.

We now show why N(ε,F∞, L2(Q)) ≤ N2(ε/2,F , L2(Q)) for all measures Q. Take an ε/2 covering of
F consisting of N = N(ε/2,F , L2(Q)). Denote with S = {f1, f2, . . . , fN} the covering set. We show
that the set {f − g : f, g ∈ S}, which are N2 points, is an ε-cover of F∞. Take any point h ∈ F∞.
We know that h = s − t for some functions s, t ∈ F . Take f and g such that

√
Q(s− f)2 < ε/2

and
√
Q(t− g)2 < ε/2. Use triangle inequality to conclude that

√
Q((s− t)− (f − g))2 < ε, which

concludes the proof.

Here we show that ifN(ε||2F ||2n,F2
∞, L1(Pn)) is finite for all ε, it must be the case that logN(ε,F2

∞,M , L1(Pn)) =

o∗P (n), in fact this number turns out to also be finite. First note that N(ε,F2
∞,M , L1(Pn)) ≤

N(ε,F2
∞, L1(Pn)). Fix ε > 0. Since P ∗F 2 < ∞, then there exists S such that ||2F ||2n ≤ S with

probability 1. Thus N(εS,F2
∞, L1(Pn)) ≤ N(ε||2F ||2n,F2

∞, L1(Pn)) with probability 1, and thus
since ε > 0 was arbitrary N(ε,F2

∞, L1(Pn)) is O∗P (1), and therefore logN(ε,F2
∞, L1(Pn)) = o∗P (n),

which implies that logN(ε,F2
∞,M , L1(Pn)) = o∗P (n).
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