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1 A Donsker Theorem

We now provide a sufficient condition for a class being Donsker. This condition will be defined in
terms of a “uniform entropy” of the covering numbers, but there are other sufficient conditions using
the entropy of the bracketing numbers which we won’t consider. We have the following result:

Theorem. Let F be a class of measurable functions, with envelope F , that satisfies the following
uniform entropy bound:

∫ ∞
0

sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε <∞

The supremum is taken over all finitely discrete probability measures Q on (X ,A), such that
||F ||2Q,2 =

∫
F 2dQ > 0. Let the classes Fδ = {f − g : f, g ∈ F , ||f − g||P,2 < δ} and F2

∞ =

{f2 : f ∈ F∞} be P -measurable for any δ > 0. If P ∗F 2 <∞, then F is P -Donsker.

Proof. Let δn ↓ 0 be arbitrary. By Markov’s inequality we have:

P ∗(||Gn||Fδn ≥ x) ≤
E∗ ||Gn||Fδn

x

We then use the symmetrization lemma we proved last time:

E∗ ||Gn||Fδn
x

≤ 2

x
E∗

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

Now since we are assuming the class Fδn is P -measurable the E∗ can be replaced by iterative
expectation E∗ = EX Eε. We now fix the values of X1, . . . , Xn. We next apply Hoeffding’s inequality
to the Rademacher process f 7→ {n−1/2

∑n
i=1 εif(Xi)} to conclude that this process is sub-Gaussian

for the L2(Pn)-seminorm:

||f ||n =

√√√√ 1

n

n∑
i=1

f2(Xi)

Now we use the second part of the corollary we derived in the end of Lab 6 (with f0 = 0), to conclude
that:

Eε

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

.
∫ ∞
0

√
logD(ε,Fδn , L2(Pn))dε .

∫ ∞
0

√
logN(ε,Fδn , L2(Pn))dε
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Where the last inequality follows upon noting that we can change the variable ε → 1/2ε, and in-
crease the inequality constant a bit.

Note here that when ε is large enough the space Fδn can be contained in only 1 ball. This certainly
happens when ε > θn, where:

θ2n = sup
f∈Fδn

||f ||2n =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

f2(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

This is true because then we can center a ball at 0 and radius ε to cover the whole class Fδn . Thus
we have:

Eε

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

.
∫ θn

0

√
logN(ε,Fδn , L2(Pn))dε

Furthermore obviously the covering numbers of the class Fδ ⊂ F∞ are bounded by the covering
numbers of F∞. The latter numbers satisfy N(ε,F∞, L2(Q)) ≤ N2(ε/2,F , L2(Q)) for all measures
Q (see why in the appendix). Therefore upon a change of variables, and bounding the integrand we
consequently get:

Eε

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣
Fδn

.
∫ θn/||F ||n

0

√
logN(ε||F ||n,F , L2(Pn))dε||F ||n

.
∫ θn/||F ||n

0

sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε||F ||n

≤
∫ ∞
0

1(ε ≤ θ∗n/||F∗||n)||F ∗||n sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε

Where the supremum is taken over all finitely discrete measures Q (this set trivially incudes Pn
so the bound is trivial in that sense). Note that by doing this trivial bounding we got rid of the
dependence of the integrand on the dataset. The only thing that depend on the dataset still is
1(ε ≤ θ∗n/||F∗||n)||F ∗||n. Everything so far was conditional on the data X1, . . . , Xn.

Note that we can always add the constant 1 to the envelope function F without changing the second
moment condition. We still need to get the expectation EX .This will ensure that F∗ ≥ 1. Taking it
results in:

∫ ∞
0

EX 1(ε ≤ θ∗n/||F∗||n)||F ∗||n sup
Q

√
logN(ε||F ||Q,2,F , L2(Q))dε

CS
≤
√

EX ||F ∗||2n︸ ︷︷ ︸
O(1)

∫ ∞
0

√
P (ε ≤ θ∗n) sup

Q

√
logN(ε||F ||Q,2,F , L2(Q))dε

Now since the integrand
√
P (ε ≤ θ∗n) supQ

√
logN(ε||F ||Q,2,F , L2(Q)) ≤ supQ

√
logN(ε||F ||Q,2,F , L2(Q))

which is integrable by our assumption, the Dominated Convergence Theorem would ensure that the

above integral converges to 0 provided that θn
P∗→ 0, which will finish the proof of the asymptotic

equicontinuity because then P (||Gn||Fδn ≥ x) will converge to 0, as δn → 0.
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Note that θn =
∣∣∣∣Pnf2∣∣∣∣Fδn . Note then that since sup{Pf2 : f ∈ Fδn} → 0, and Fδn ⊂ F∞, it is

enough to show that:

∣∣∣∣Pnf2 − Pf2∣∣∣∣F∞
→ 0

This is of course a ULLN for the class F2
∞. This class has an integrable envelope (2F )2, and is

P -measurable by assumption. For any pair of functions f, g ∈ F∞ we have:

Pn|f2 − g2| ≤ Pn|f − g|4F ≤ ||f − g||n ||4F ||n

Therefore if ||f − g||n ≤ ε||F ||n it follows that Pn|f2 − g2| ≤ ε(2||F ||n)2. This statement translated
to covering numbers is N(ε||2F ||2n,F2

∞, L1(Pn)) ≤ N(ε||F ||n,F∞, L2(Pn)). As we argued earlier we
have:

N(ε||F ||n,F∞, L2(Pn)) ≤ N2(ε||F ||n/2,F , L2(Pn))

and the latter must be a finite number in order for us to have the uniform entropy bounded. It
is shown in the appendix that the condition N(ε||2F ||2n,F2

∞, L1(Pn)) is a finite number implies the
GC condition in the GC theorem above (or you can argue from the remark in the end of section 1).
This concludes the asymptotic equicontinuity part of the proof.

The final step of the proof is to show that, the space F is totally bounded in L2(P ). From the result
that we just showed we know that there exists a sequence of finitely discrete measures Pn such that
||(Pn − P )f2||F∞ converges to 0. Take n sufficiently large so that the supremum is bounded by ε2.
We know that N(ε,F , L2(Pn)) is finite (this can be shown along the lines of the fact shown in the
appendix). Any ε-net for F in L2(Pn) is a

√
2ε-net in L2(P ), since P (f−g)2 ≤ ε2+Pn(f−g)2 ≤ 2ε2.

This concludes the proof.

Example. The set F of all indicator functions 1(−∞,t] of cells in R satisfies:

N(ε,F , L2(Q)) ≤ N[](ε
2,F , L1(Q)) ≤ 2

ε2

for any probability measure and ε ≤ 1, for any probability measure Q. The first inequality follows
from the fact that,

√
Q(f − g)2 =

√
Q|f − g| so that if Q|f−g| ≤ ε2 we would have

√
Q(f − g)2 ≤ ε.

Therefore N(ε,F , L2(Q)) ≤ N(ε2,F , L1(Q)). Furthermore if we have a bracket on the set F – [l, u]
we can put a ball with a center at the function l+u

2 and radius ε2, this ball will obviously cover
all the functions within the bracket. And thus N(ε2,F , L1(Q)) ≤ N[](ε

2,F , L1(Q)). The right
inequality follows because the total probability mass is 1, and we are splitting it in intervals of ε2

we have at most 1/ε2 + 1 ≤ 2/ε2 brackets. Therefore for the uniform entropy in [0, 1] we have

.
∫ 1

0
log(1/ε)dε < ∞. Of course when ε > 1 the number of brackets required is only 1 so that

it’s 0 in the integral. Thus the class F would be Donsker if we can show that Fδ and F2
∞ are

P -measurable. This is not hard however, since Q is dense in R so we can get to the supremums by
countable number of operations.

Compare this result to Slide 55, noteset 2!

We consider much more general classes that satisfy the uniform entropy condition next time.

2 Uniform Entropy Numbers

The uniform entropy integral will be convergent if:
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sup
Q

logN(ε||F ||Q,2,F , L2(Q)) ≤ K
(

1

ε

)2−δ

For some δ > 0. Here we consider classes that satisfy a much stronger condition, namely:

sup
Q
N(ε||F ||Q,2,F , L2(Q)) ≤ K

(
1

ε

)V
, 0 < ε < 1

2.1 VC Classes of Sets

VC stands for Vapnik and C̆ervonenkis, who were the first to study these sets.

Let C be a collection of subsets of a set X . An arbitrary set of n points {x1, . . . , xn} possesses
2n subsets. Say that C, picks out a certain subset from {x1, . . . , xn} if this subset takes the form
C ∩ {x1, . . . , xn} for some C ∈ C. C is said to shatter {x1, . . . , xn} if all possible 2n subsets can be
picked out by C.

The VC-index V (C) of the collection C is the smallest n for which there is no set of size n, which is
shattered by C. More formally we can defined the VC-index by:

∆n(C, x1, . . . , xn) = # {C ∩ {x1, . . . , xn} : C ∈ C}
V (C) = inf{n : max

x1,...,xn
∆n(C, x1, . . . , xn) < 2n}

Note here that it is possible to have a set with V (C) = ∞. Here we will be focusing only on sets
with finite V (C) index. These collections of sets are called VC-classes.

Example (Cells in Rd). The collections of all cells of the form (−∞, c] in R shatters no two-point
set {x1, x2}. This is because we can’t pick out the larger of the two points only. Thus the V (C)
index of this collection is 2. The collection of sets (a, b] for a, b ∈ R shatters every two point set,
but it cannot shatter any set consisting of three points {x1, x2, x3}, because it can’t pick out the set
{x1, x3} (assuming x1 < x2 < x3). Thus the VC-index of this collection is 3. Similarly it can be
shown that the VC indexes of cells in Rd of the first type is d+ 1 and of the second type is 2d+ 1.
In the appendix we sketch a quick proof of the first of these facts, the other is left as an exercise.

VC classes are important because of the following important combinatorial result: the number of
subsets shattered by a class C is at least the number of subsets picked out by C. Formally we express
this statement as:

Lemma. Let {x1, . . . , xn} be arbitrary points. Then the total number of subsets ∆n(C, x1, . . . , xn)
picked out by C is bounded above by the number of subsets of {x1, . . . , xn} shattered by C.

This result is known as Sauer-Shelah lemma, even though it was first proved by Vapnik and
C̆ervonenkis.

Proof. Assume WLOG that every C is a subset of the given set of points, such that ∆n(C, x1, . . . , xn)
is the cardinality of C.

Call a collection of sets in C hereditary if it has the property that B ∈ C whenever there exists C
such that B ⊂ C ∈ C. Each set in a hereditary collection is shattered (each of its subsets subsets
are part of C). This means that in a hereditary collection of sets the total number of shattered sets
is at least |C| which of course bounds the number of sets that C can pick out. The proof proceeds
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to show that any collection of sets C can be transformed in to hereditary collection of sets, without
changing its cardinality and without increasing the number of shattered sets.

For a fixed 1 ≤ i ≤ n, consider the following operation on the collection. Define:

Ti(C) =

{
C − {xi}, if C − {xi} 6∈ C
C, if C − {xi} ∈ C

Or in words, Ti deletes the ith element of the set C if this creates a new set in C. Therefore if a set
doesn’t contain xi it will be left untouched by this operation, and if a set did contain xi it will be
deleted only if this creates a new set.

Note several facts about this operation on the whole collection of sets C. First, Ti(C) is of the same
cardinality as C (|Ti(C)| = |C|) because the map Ti is a bijection.

Second, note that if a subset of {x1, . . . , xn} is shattered by Ti(C) it is shattered by C. To see this
take a subset A ⊂ {x1, . . . , xn}, which is shattered by Ti(C). If xi 6∈ A we have that C∩A = Ti(C)∩A
for C ∈ C, and therefore Ti(C) shatteres A if and only if C shatters A. Now consider the case when
xi ∈ A. If Ti(C) shatters A it follows for that each subset B ⊂ A then since B ∪ {xi} ⊂ A we
have B ∪ {xi} = A ∩ Ti(C) for some C ∈ C. IIt follows that xi ∈ Ti(C) and therefore Ti(C) = C.
This means that both C,C − {xi} ∈ C.Therefore we have the following representations of the sets
B∪{xi} = A∩C and B−{xi} = A∩(C−{xi}). Finally note that exactly one of these two sets is B.

The last two facts showed that applying Ti to the collection C preserves the cardinality and doesn’t
increase the number of shattering sets. Therefore the same is valid for the transformation T1 ◦ T2 ◦
· · · ◦ Tn. We can apply this operator until the collection of sets stops to change. This will happen
until at most

∑
C∈C |C| number of steps, because

∑
C |Ti(C)| <

∑
C |C| when the two collections

are different (when they are different at least one set has lost an element). Finally note that the
stable collection D we end up with is hereditary. This is the case since for any element D ∈ D, the
sets D − {xi} ∈ D for all i. Finally this finishes the proof.

Corollary. For a VC-class of sets of index V (C), one has:

max
x1,...,xn

∆n(C, x1, . . . , xn) ≤
V (C)−1∑
j=0

(
n

j

)

And further, for n ≥ V (C)− 1 we have:

V (C)−1∑
j=0

(
n

j

)
≤
(

ne

V (C)− 1

)V (C)−1

Proof. Indeed for a VC-class of index V (C) it doesn’t shatter any set of size at least V (C). Therefore
from the previous lemma we directly obtain the bound of the first inequality. The second inequality
is easily verified through a Taylor expansion of eV (C)−1
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A Some Details

We now show why N(ε,F∞, L2(Q)) ≤ N2(ε/2,F , L2(Q)) for all measures Q. Take an ε/2 covering of
F consisting of N = N(ε/2,F , L2(Q)). Denote with S = {f1, f2, . . . , fN} the covering set. We show
that the set {f − g : f, g ∈ S}, which are N2 points, is an ε-cover of F∞. Take any point h ∈ F∞.
We know that h = s − t for some functions s, t ∈ F . Take f and g such that

√
Q(s− f)2 < ε/2

and
√
Q(t− g)2 < ε/2. Use triangle inequality to conclude that

√
Q((s− t)− (f − g))2 < ε, which

concludes the proof.

Here we show that ifN(ε||2F ||2n,F2
∞, L1(Pn)) is finite for all ε, it must be the case that logN(ε,F2

∞,M , L1(Pn)) =

o∗P (n), in fact this number turns out to also be finite. First note that N(ε,F2
∞,M , L1(Pn)) ≤

N(ε,F2
∞, L1(Pn)). Fix ε > 0. Since P ∗F 2 < ∞, then there exists S such that ||2F ||2n ≤ S with

probability 1. Thus N(εS,F2
∞, L1(Pn)) ≤ N(ε||2F ||2n,F2

∞, L1(Pn)) with probability 1, and thus
since ε > 0 was arbitrary N(ε,F2

∞, L1(Pn)) is O∗P (1), and therefore logN(ε,F2
∞, L1(Pn)) = o∗P (n),

which implies that logN(ε,F2
∞,M , L1(Pn)) = o∗P (n).

Why is the VC-index of (−∞, x], x ∈ Rd – d+1? First note that the set of d points {[0, . . . , 1︸︷︷︸
i

, . . . , 0]}di=1

can be shattered. For the other part we show that no set of size d+ 1 in Rd can be shattered. Take
the union of points such that for each index they have the largest number. These points are at
most d. There is no way we can shatter this set without including all points, which would be a
contradiction. This finishes the proof.
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