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Orlicz norm

Orlicz norm of a non-decreasing, convex function 1 with ¥(0) =0
for a random variable X: ||X||, is defined as:

X]

1X|ly = inf{C >0:Ev (c) <1}
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Examples

o (x) = xP, gives us L,
® Yp(x) = exp(xP) —1

Some Inequalities

o [[X[lp < [[X[l,
o [IXlly, < (log2)?/9||X]ly,, p < g
o [[X]lp < P! X[l

N
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Tail Bounds with Orlicz norms

Tail Bounds

e P(|X]|>x) < 7 , by Markov's Inequality

Lt
(/11X ly)

@ Thus for 1, we get a bound of the sort ~ exp(—Cx”)

Let X be a random variable with P(|X| > x) < K exp(—CxP), for
every x for some constants K and C, and for p > 1. Then its
Orlicz norm satisfies || X||y, < ((1+ K)/C)Y/P.
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An inequality for L, norms
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In general for ¢) norms we have:

Lemma

Let 1) be a convex, nondecreasing, nonzero function with

¥(0) =0, and limsup, , zpl(;z);fg) < oo for some constant c.

Then for any random variables Xi, X3, ..., X, we have:

max X;
1<i<m

< Ky ~'(m) max [| X[y

¥

where the constant K depends on ) only.




What happens when ¢ = 1),

For ¢(x) = p(x) = & — 1 we have ;1 (m) = (log(1 + m))/P.
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Packing and Covering numbers

Let (T, d) be a an arbitrary semimetric space.

Definition (Covering numbers).

The covering number N(e, d) is the minimal number of balls of
radius € needed to cover T.

Definition (Packing numbers).

Call a collection of points e-separated if the minimum distance
between any two points is is strictly larger than €. The packing
number D(e, d) is the maximal number of e-separated points in T.




SmmEmESS
Packing and Covering numbers

We have the following relationship

N(z,d) < D(e, d) < N(%e, d)
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Important Theorem

Theorem

Let ¢ satisfy the previous requirements. Let {X;:t € T}, be a
separable stochastic process, with:

| Xs — Xt||p < Cd(s, t), for every s, t

for some semimetric d on T and a constant C. Then, for any
7,0 >0,

sup | Xs — Xi
d(s,t)<o

< K [ / " 471(D(e, d))de + 541 (D(n, )
0

(U

for a constant K depending on % and C only.
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Corollary

The constant K can be chosen such that:

diam T
< K/O Y Y(D(e, d))de

sup |Xs - Xt|
s,t

(U
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Hoeffding's Inequality (Special Case)

Lemma (Hoeffding's Inequality).

Let a1,...,a, are constants and &1, ...,&, are iidRademacher
random variables: i.e. P(e =1) = P(e = —1) =1/2. Then we
have:

P(IY " eiail > x) < 2~ 2% /11alP

for the Euclidean norm ||a||. Consequently, || " &;ail|y, < V6]a|].
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Sub-Gaussian Processes

Definition

A stochastic process is called sub-Gaussian with respect to the
semimetric d on its index set if:

P(|Xs — X¢| > x) < 2exp_%x2/d2(5’t), for every s,t € T,x >0

Any sub-Gaussian process satisfies: ||Xs — X¢||y, < V6d(s, t)
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Examples

Gaussian Processes

Any Gaussian process is sub-Gaussian with respect to
d(S, t) = O'(Xs — Xt)

Rademacher Processes

n
X, = Za;s;, acR"
i=1

for Rademacher variables ¢;, ..., e,. By Hoeffding's inequality, this
is sub-Gaussian wrt to the Euclidean distance d(a, b) = ||a — b||.
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Corollary for sub-Gaussian Processes

Corollary

Let {X; : t € T} be a separable sub-Gaussian process. Then for
any 6 > 0:

0
E sup |X5—Xt|§K/ Vlog(D(e, d))de
0

d(s,t)<é

for a universal constant K. In particular, for any ty:

Esup |X,| < E[X| + K | v/Iog(D(z. d))de
t 0
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